Integrodifferential Equations on Time Scales with Henstock-Kurzweil-Pettis Delta Integrals
نویسندگان
چکیده
منابع مشابه
Integrodifferential Equations on Time Scales with Henstock-Kurzweil-Pettis Delta Integrals
and Applied Analysis 3 We note that 1.1 in its general form involves some different types of differential and difference equations depending on the choice of the time scale T . For example: 1 for T R, we have σ t t, μ t 0, and xΔ t x′ t , and 1.1 becomes the Cauchy integrodifferential equation: x′ t f ( t, x t , ∫ t 0 k t, s, x s ds ) , t ∈ R,
متن کاملIntegro-differential Equations on Time Scales with Henstock-kurzweil Delta Integrals
In this paper we prove existence theorems for integro – differential equations x(t) = f(t, x(t), ∫ t 0 k(t, s, x(s))∆s), x(0) = x0 t ∈ Ia = [0, a] ∩ T, a ∈ R+, where T denotes a time scale (nonempty closed subset of real numbers R), Ia is a time scale interval. Functions f, k are Carathéodory functions with values in a Banach space E and the integral is taken in the sense of Henstock-Kurzweil d...
متن کاملHenstock–Kurzweil delta and nabla integrals
We will study the Henstock–Kurzweil delta and nabla integrals, which generalize the Henstock–Kurzweil integral. Many properties of these integrals will be obtained. These results will enable time scale researchers to study more general dynamic equations. The Hensock–Kurzweil delta (nabla) integral contains the Riemann delta (nabla) and Lebesque delta (nabla) integrals as special cases.
متن کاملRetarded Functional Differential Equations in Banach Spaces and Henstock-kurzweil-pettis Integrals
We prove an existence theorem for the equation x = f(t, xt), x(Θ) = φ(Θ), where xt(Θ) = x(t + Θ), for −r ≤ Θ < 0, t ∈ Ia, Ia = [0, a], a ∈ R+ in a Banach space, using the Henstock-KurzweilPettis integral and its properties. The requirements on the function f are not too restrictive: scalar measurability and weak sequential continuity with respect to the second variable. Moreover, we suppose tha...
متن کاملVolterra Integral Inclusions via Henstock-kurzweil-pettis Integral
In this paper, we prove the existence of continuous solutions of a Volterra integral inclusion involving the Henstock-Kurzweil-Pettis integral. Since this kind of integral is more general than the Bochner, Pettis and Henstock integrals, our result extends many of the results previously obtained in the single-valued setting or in the set-valued case.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Abstract and Applied Analysis
سال: 2010
ISSN: 1085-3375,1687-0409
DOI: 10.1155/2010/836347